


FIG. 5. Variation of the limiting values of  $c_{11}$  and c'. The smooth curves for  $c_{11}^0$  and  $c'^0$  are taken from Ref. 4. The crosses are infinite-frequency elastic constants reported in Ref. 5; see text for a discussion of the choice of the  $c_{11}^\infty$  and  $c'^\infty$  smooth curves. Note that the vertical scale for c' is 10 times larger than that for  $c_{11}$ .

a function of temperature at ~ 16 GHz, <sup>5</sup> and the elastic stiffness corresponding to this wave is  $c_L = c_{11} - c' + c_{44}$ . The open circles shown in Fig. 5 represent  $c_{11}$  values calculated from  $c_{11}$  $= c_L(16 \text{ GHz}) + c'^{\infty} - c_{44}^{\infty}$ . (Since there is no dis-



8

The values of the relaxation strength C calculated at various temperatures from the smooth-curve values of  $c^{\circ}$  and  $c^{0}$  are shown in Fig. 6, where 1/C is plotted versus  $\Delta T = T - T_{\lambda}$ . The relaxation strength for the  $c_{11}$  wave in NH<sub>4</sub>Cl at 1 atm is also shown for comparison. This empirical plot indicates that 1/C varies linearly with  $\Delta T$  for the [100] longitudinal wave in both NH<sub>4</sub>Cl and NH<sub>4</sub>Br. Indeed, this linear variation extends out to  $\Delta T$ = 50 for NH<sub>4</sub>Cl.<sup>3</sup> The inverse relaxation strength for the longitudinal wave can be represented in the form

$$C^{-1}(\epsilon) = C^{-1}(0) + b \epsilon^m , \qquad (6)$$

where  $\epsilon$  is the reduced temperature and *m* is an empirical exponent equal to 1 at 1 atm. The parameters  $C^{-1}(0)$  and *b* are, respectively, 6.4 and 120 (in units of  $10^6$  cm sec<sup>-1</sup>) for NH<sub>4</sub>Br; the

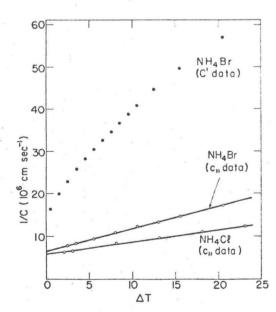



FIG. 6. Inverse relaxation strengths as a function of  $\Delta T = T - T_{\lambda}$  (in °K). The results for NH<sub>4</sub>Cl are taken from Ref. 3.

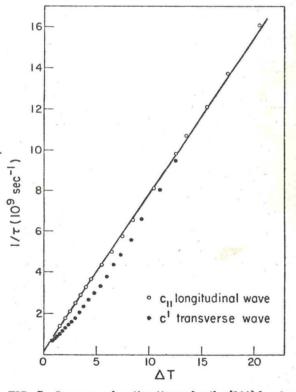



FIG. 7. Inverse relaxation times for the [100] longitudinal wave and the [110] transverse wave as a function of  $\Delta T$  (in °K).